
一、堆空间
垃圾回收机制主要工作于堆,那么让我们首先了解一下堆空间的基本结构
- 新生代
- Eden区
- From Survivor
- To Survivor
- 老年代
大部分情况,对象都会首先在Eden区分配,在一次新生代垃圾回收后,如果对象还存活,则会进入幸存区,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。
经过一次 GC 后,Eden 区和”From”区已经被清空。这个时候,”From”和”To”会交换他们的角色,也就是新的”To”就是上次 GC 前的“From”,新的”From”就是上次 GC 前的”To”。不管怎样,都会保证名为 To 的 Survivor 区域是空的。Minor GC 会一直重复这样的过程,直到“To”区被填满,”To”区被填满之后,会将所有对象移动到老年代中。
大对象
大对象是需要大量连续内存空间的对象(字符串、数组等),将直接进入老年代。为了避免为对象分配内存时由于分配担保机制带来的复制而降低效率
轻GC和重GC
- 轻GC/部分收集(Partial GC)
- 新生代收集(Minor GC / Young GC):只对新生代进行垃圾收集
- 老年代收集(Major GC / Old GC):只对老年代进行垃圾收集。需要注意的是 Major GC 在有的语境中也用于指代整堆收集
- 混合收集(Mixed GC):对整个新生代和部分老年代进行垃圾收集
- 重GC/整堆收集 (Full GC):收集整个 Java 堆和方法区。
二、如何判断垃圾
堆中存放着大部分的对象实例,那如何判断这个对象是一个垃圾呢(即这个对象已经死亡/不再被任何途径使用的对象)
引用计数法
给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加 1;当引用失效,计数器就减 1;任何时候计数器为 0 的对象就是不可能再被使用的。
这个方法实现简单,效率高,但是目前主流的虚拟机(如python就是采用的引用计数法)中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。
所谓对象之间的相互引用问题,如下面代码所示:除了对象 objA 和 objB 相互引用着对方之外,这两个对象之间再无任何引用。但是他们因为互相引用对方,导致它们的引用计数器都不为 0,于是引用计数算法无法通知 GC 回收器回收他们。
1 | public class Main { |
最后面两句将object1和object2赋值为null,也就是说object1和object2指向的对象已经不可能再被访问,但是由于它们互相引用对方,导致它们的引用计数都不为0,那么垃圾收集器就永远不会回收它们。
可达性分析算法
为了解决这个问题,在Java中采取了可达性分析法。该方法的基本思想是通过一系列的“GC Roots”对象作为起点进行搜索,如果在“GC Roots”和一个对象之间没有可达路径,则称该对象是不可达的,不过要注意的是被判定为不可达的对象不一定就会成为可回收对象。被判定为不可达的对象要成为可回收对象必须至少经历两次标记过程,如果在这两次标记过程中仍然没有逃脱成为可回收对象的可能性,则基本上就真的成为可回收对象了。
在Java语言中,可作为 GC Roots 的对象包括下面几种:
- 虚拟机栈(栈帧中的本地变量表)中引用的对象。
- 方法区中类静态属性引用的对象。
- 方法区中常量引用的对象。
- 本地方法栈中 JNI(Native方法)引用的对象
强、软、弱、虚引用
- 强引用是指在程序代码之中普遍存在的,类似”Object obj=new Object()”这类的引用,垃圾收集器永远不会回收存活的强引用对象。
- 软引用是指还有用但并非必需的对象。在系统 将要发生内存溢出异常之前 ,将会把这些对象列进回收范围之中进行第二次回收。
- 弱引用也是用来描述非必需对象的,被弱引用关联的对象 只能生存到下一次垃圾收集发生之前 。当垃圾收集器工作时,无论内存是否足够,都会回收掉只被弱引用关联的对象。
- 虚引用是最弱的一种引用关系。 无法通过虚引用来取得一个对象实例 。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。
三、垃圾收集算法
共有4种:
- 标记-清除算法
- 复制算法
- 标记整理算法
- 分代收集算法
标记-清除算法
该算法分为“标记”和“清除”阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。它是最基础的收集算法,后续的算法都是对其不足进行改进得到。这种垃圾收集算法会带来两个明显的问题:
- 效率问题,标记和清除两个过程的效率都不高;
- 空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
示意图如下:
复制算法
为了解决效率问题,一种称为“复制”(Copying)的收集算法出现了,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为了原来的一半。复制算法的执行过程如下图:
不过因为新生代中的对象大都存活时间较少,所以也不是按照1:1的比例进行划分空间的,而是分为了Eden(80%)和两块Survivor(各10%),每次使用Eden和一块Survivor。
当回收时,将 Eden 和 Survivor 中还存活着的对象一次性地复制到另外一块 Survivor 空间上,最后清理掉 Eden 和刚才用过的 Survivor 空间。
很显然,Copying算法的效率跟存活对象的数目多少有很大的关系,如果存活对象很多,那么Copying算法的效率将会大大降低。
标记整理算法
根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存
“标记-整理”算法的示意图如下:
分代收集算法
当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将 java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
比如在新生代中,每次收集都会有大量对象死去,所以可以选择”标记-复制“算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。
四、垃圾收集器
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。有以下几种
- Serial收集器
- Serial Old收集器
- ParNew收集器
- Parallel Scavenge收集器
- Parallel Old收集器
- CMS收集器
- G1收集器
- ZGC收集器
Serial收集器
Serial收集器是最基本最古老的收集器,它是一个单线程收集器,并且在它进行垃圾收集时,必须暂停所有用户线程。Serial收集器是针对新生代的收集器,采用的是Copying算法,它的优点是实现简单高效,但是缺点是会给用户带来停顿。
Serial Old收集器
与Serial相似但不相同,因为Serial Old收集器是针对老年代的收集器,采用的是Mark-Compact算法。
ParNew收集器
ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和 Serial 收集器完全一样。
Parallel Scavenge收集器
Parallel Scavenge收集器是一个新生代的多线程收集器(并行收集器),它在回收期间不需要暂停其他用户线程,其采用的是Copying算法,该收集器与前两个收集器有所不同,它主要是为了达到一个可控的吞吐量。
Parallel Old收集器
Parallel Old是Parallel Scavenge收集器的老年代版本(并行收集器),使用多线程和Mark-Compact算法。
CMS收集器
CMS(Current Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,它是一种并发收集器,采用的是Mark-Sweep算法。
G1收集器
G1收集器是当今收集器技术发展最前沿的成果,它是一款面向服务端应用的收集器,它能充分利用多CPU、多核环境。因此它是一款并行与并发收集器,并且它能建立可预测的停顿时间模型。
ZGC收集器
与 CMS 中的 ParNew 和 G1 类似,ZGC 也采用标记-复制算法,不过 ZGC 对该算法做了重大改进。
在 ZGC 中出现 Stop The World 的情况会更少。
- 本文标题:垃圾回收机制
- 本文作者:Kang
- 创建时间:2021-02-28 16:04:41
- 本文链接:ykhou.github.io2021/02/28/垃圾回收机制/
- 版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!